材料加工工程学科 学术学位硕士研究生培养方案

学科代码: 080503

一、学科简介

依托材料加工工程学科的材料成型及控制工程专业成立于 1998年,2003年获批材料加工工程硕士点,2012年成为山东省名校工程重点建设专业,2016年入选山东省高水平应用型重点专业群,2018年入选山东省新旧动能转换对接产业项目重点专业群,2019年成为山东省产教融合示范性品牌专业,2020年成为山东省一流本科专业建设点。

材料加工工程学科现有专任教师 36 人,其中教授 8 人、副教授 11 人、博士生导师 6 人、硕士生导师 24 人,具有博士学位的教师占 70%。拥有国家级重点人才工程专家 1 名、国务院政府特殊津贴获得 者 1 名、山东省泰山产业领军人才 2 名、山东省专业技术拔尖人才 1 名、淄博市"英才计划"人选 1 名,形成了一支年龄结构、职称结构、学历结构合理的高水平师资队伍。

近 10 年来,本学科共承担国家级项目 16 项、省部级项目 30 余项及横向课题 50 余项,获得国家科技进步二等奖 1 项、其他各类奖励 10 余项,发表高水平学术论文 200 余篇,其中被 SCI/EI 收录 150 余篇,出版著作、教材 8 部,授权发明专利 30 项。本学科依托"机械工程国家级实验教学示范中心"、"山东省现代金属材料成形工程技术研究中心"、"山东省高校精密模具重点实验室"等教学科研平台,支撑学科特色和内涵发展。

在多年的建设与发展过程中,材料加工工程学科形成了以先进材料制备及加工技术、材料设计与改性、表面工程和增材制造等特色研究方向。本学科始终以共性技术问题为导向,开展应用技术研究,形成原创性应用技术成果,产生了巨大的经济与社会效益。

二、培养目标

立足国家战略和区域经济发展,面向材料加工工程领域,培养基础理论扎实、创新实践能力强,具有良好的人文素养、职业道德和开阔的国际视野,能够独立从事材料加工工程领域基础理论研究、技术开发与管理的复合型高级专业人才。

- 1. 拥护党的基本路线和各项方针、政策, 热爱祖国, 遵纪守法, 具有良好的职业道德和敬业精神, 以及科学严谨、求真务实的治学态度和工作作风, 德智体美劳全面发展。
- 2. 掌握坚实的材料加工工程领域相关的基础理论和专业知识,深入了解本学科的发展状况和发展趋势,掌握材料的制备、加工及组织结构与性能研究的基本方法,具有从事科学研究和担负专门技术工作的能力,能够胜任本学科及相近学科的教学、科学研究和工程技术开发等工作。
- 3. 熟练掌握一门外国语, 能顺利阅读本学科领域的科技资料及 文献, 并具备较好的听、说、读和写作能力; 积极向上, 具有良好的 精神面貌、行为习惯以及健全的人格。
- 4. 为高等学校、科研单位、行业管理部门及装备制造企业培养 从事机械工程领域教学和科学研究、产品设计开发、生产加工、制造 测试、生产技术管理等工作的创新型高层次人才。

三、研究方向

材料加工工程(二级学科)学术硕士学位研究生培养方案设以下4个研究方向:

- 1. 先进材料制备及加工技术
- 2. 材料设计与改性
- 3. 表面工程(交叉方向)
- 4. 增材制造(交叉方向)

各研究方向简介详见附表 1。

四、学习年限

学制3年,修业年限2-4年,科学研究和论文撰写时间不少于1年(从开题通过之日起计算)。经导师同意,可申请提前毕业,但科学研究和论文撰写时间要求不变。休学时间(累计不超过两年)不计入学习年限。

五、课程设置与学分要求

课程教学实行学分制,课程分为必修课、选修课和其他培养环节学分。研究生须在规定的学习年限内完成不少于34学分的学习任务,其中课程学分不少于28学分(必修课不少于19学分,选修课不少于9学分),必须选修不少于1门的全外语授课课程;其他培养环节不少于6学分。同等学历或跨专业攻读全日制学术学位硕士研究生者,应补修本领域本科阶段主干课程2门及导师指定的其它课程,考核合格后方可申请毕业答辩。

课程设置详细情况见附表 2。

六、培养方式与培养环节

学术学位硕士研究生培养实行导师负责制,鼓励实行以导师负责为主的指导小组(团队)制。导师负责制订研究生培养计划,且对研究生的思想品德、学术道德有引导、示范和监督的责任。

1. 开题报告

为确保学位论文的质量,研究生应通过文献阅读、学术调研,确定论文选题和研究内容,经导师同意后于第三学期期中(每年10月份之前)提交开题报告并进行开题答辩;实施"末尾淘汰制",开题时间间隔不得低于3个月。

开题由各学科分别组织,开题答辩小组由 5 人及以上专家组成,其中跨学科或跨方向专家不少于 1 人,负责对研究生所做开题报告进行评审、做出评价、提出修改意见;各学科排在后 10%的研究生需重新修改开题报告后参加学院的集中开题。

学院集中开题的答辩小组由 7 人及以上专家组成,其中跨学院专家不少于 2 人,负责对研究生所做开题报告进行评审、做出评价、提出修改意见;未通过者,需重新修改开题报告后再次参加学院集中答辩,直至开题通过或做劝退处理。

开题报告通过即获得1学分。

2. 中期筛选考核

研究生课程学习结束后,以研究生培养方案为依据,在第四学期对研究生的政治思想和道德品质、基础理论和专业知识、科研创新、实践能力、论文进展情况及健康状况等方面进行综合考核。其目的是总结评价研究生入学以来的学习及科研情况,及时发现研究生培养过程中存在的问题,探讨解决问题的方法,明确今后努力的方向。中期

筛选考核合格,可继续完成学位论文;考核不合格者,终止学籍,作研究生肄业处理。中期考核通过后即获得1学分。

3. 实习实践

- ①教学实践:为培养研究生的教学能力和沟通表达能力,研究生在学习期间应参加教学实践。教学实践可采取多种方式进行,如协助导师完成本科课程教学、辅导工作或指导生产实习、课程设计及毕业设计等工作。教学实践时间累计不少于1个月的工作量,结束后由导师写出考核评语,考核通过即获得1学分。
- ②专业实践:为培养研究生的动手操作能力和实践创新能力,研究生在学习期间应参加专业实践。对学术学位研究生,应安排至少1个月的时间(一般可以利用寒、暑假)到生产、设计研究单位进行实践训练,也可以参加结合研究方向的科研工作或实验室等工作。完成专业实践环节且经考核通过后,即获得1学分。

4. 创新创业

完成下列 4 项中的 2 项,即获得创新创业 2 学分:

- ① 进行 3 个月及以上出国学习或学术交流;
- ②参加学术会议并宣读论文,或做公开学术报告2次及以上;
- ③参加全国性的科技竞赛、创意设计、创新创业竞赛等并获奖;
- ④参加6次及以上与本学科相关的学术报告,并提交总结。

七、学位论文

学位论文严格按照《山东理工大学关于研究生学位论文工作的有 关规定》、《山东理工大学硕士学位授予工作实施细则》等相关文件执 行,本学科硕士研究生的学位论文应满足以下基本要求:

1. 硕士学位论文应具有系统的、完整的研究思路和计划,应对

科技进步和国民经济建设具有较大的理论意义或实用价值,学位论文 应突出创新性、前沿性和科学性。

- 2. 学位论文的主要工作,必须由作者独立完成。研究工作必须 坚持实验性原则,论文内容必须以硕士研究生本人完成的第一手实验、 观测或调查的材料为基础。
- 3. 按照《山东理工大学硕士学位授予实施细则》要求组织论文 开题、中期考核、学位论文预评审/预答辩和正式答辩等环节,论文 答辩要做到严格要求、公正、公开。

八、毕业与学位要求

满足毕业要求,可获得毕业证书;在获得毕业证书的基础上,如满足学位授予标准,可授予学位证书。

1. 毕业要求

- ① 热爱祖国,拥护中国共产党的领导,具有社会责任感和历史 使命感,维护国家和人民的根本利益,遵纪守法,身心健康;
- ② 具有良好的品德修养和学术道德,实事求是,勇于创新;
- ③ 修读完培养方案规定课程和其他培养环节,修满规定的学分;
- ④ 完成论文答辩,成绩合格;
- ⑤符合学校有关规定的其他要求。

2. 学位要求

严格执行《中华人民共和国学位条例暂行实施办法》、《山东理工大学硕士学位论文评审办法》、《山东理工大学硕士学位授予实施细则》、《山东理工大学研究生申请学位学术创新性要求的规定》以及机械工程学院学位授予有关规定。

附表 1: 研究方向简介

类 别		培养目标	支撑课程			
综合素质		德、智、体、美、劳全面发展,熟练地掌握一门外语,能进行专业阅读和写作,以及国际学术交流;具有从事科学研究和担负专门技术工作的能力,能够胜任本学科及相近学科的教学、科学研究和工程技术开发等工作。	研究生英语、口语、论文写作与学术规范、自然辩证法、新时代中国特色社会主义理论与实践、科技英语写作、科研素养与创新能力、中国古代韵文阅读与欣赏、经济学基础、美术鉴赏、设计鉴赏、中西美术比较、舞蹈形体训练、洞箫演奏基础十六课、钢琴演奏基础十六课、足球、羽毛球、瑜伽、中国传统文化			
综合能力		掌握材料加工工程学科的基础理论和系统的专门知识,深入了解本学科的发展状况和发展趋势,掌握材料的制备、加工及组织结构和性能表征与分析的基本方法。				
研究	先进材料 制备及加 工技术	熟悉铝、镁、钛等轻质金属及高性能钢铁的特性,掌握各种合金制备与加工技术,如材料凝固过程控制技术、塑性成形技术、连接技术等,掌握各种合金材料成分、组织及性能之间的内在规律,能运用合金现代材料加工理论,对材料加工过程进行控制及优化,为高性能材料及其制备提供理论支持或技术指导。	金属凝固理论、高温合金与金属间化合物、先进液态成形原理与技术、特种塑性成形理论及技术、先进焊接技术、增材制造技术、近净成形技术、材料激光加工技术			
方向	材料设计 与改性	掌握材料液态成型、塑性成型、连接成型和增材制造过程中的材料设计及加工过程的模拟技术,能根据模拟结果优化制造工艺,为新材料的制备及新工艺的实施提供指导;掌握不同的工艺方法,使材料的整体或者局部成分与组织得到改变,从而达到使金属材料的耐磨性、抗腐蚀性、强度与韧性或者其它性能得到提高或改善。	金属凝固理论、金属基复合材料设计与性能、先进液态成形原理与技术、特种塑性成形理论及技术、先进焊接技术、增材制造技术、近净成形技术、材料激光加工技术、材料成形数值模拟、计算材料学与材料设计			

	了解表面工程技术与材料表面的物理、化学、力学、热动力学原理的交 叉学科发展前沿,掌握材料表面工程技术的各种表面处理和表面涂层技术的 制备方法与关键技术,深入了解表面微纳结构及仿生表面的制造工艺,以提 高材料表面的强度与韧性、耐磨性、抗腐蚀性以及附加自清洁、润滑、抑菌 等多功能的表面。	表面技术(全英文)、材料激光加工技术、金属腐蚀与防护技术、材料中的扩散与相变、体视学原理、材料热
增材制造 (交叉方向)		

附表 2: 培养计划

学科名称	材料加工工程	学科代码	080503
单位名称	机械工程学院	培养类型	学术硕士研究生
学分要求	总学分: ≥34,必修课程学分: ≥19,	选修课程学分:	≥9

课程设置

	课程类型	课程编码	课程名称	学 分	学 期	备注
	公共必修课 程 ≥8 学分	G14001	研究生英语 English for Graduate Students	3	1	
		G14003	口语 Oral Language	1	1	
		G15003	论文写作与学术规范 Thesis Writing and Academic	1	1	
		G16003	自然辩证法 Dialectics of Nature	1	1	
		G16007	新时代中国特色社会主义理论与实践 The Theory and Practice of Socialism with Chinese Characteristics for a New Era	2	1	
学	学科平台课 程 ≥11 学分	G11001	数值分析 Numerical Analysis	3	1	必选
位课程		G11003	数理统计 Mathematical Statistics	2	1	
		010018	材料中的扩散与相变 Diffusion and Phase Transition in Materials	2	2	
		010025	现代材料分析方法 Modern Methods of Materials Testing	2	2	
		010057	体视学原理 Principles and Applications of Stereology	2	2	
		010095	断裂力学 Fracture Mechanics	2	2	
		010063	材料成形技术前沿(全英文) Frontier of Materials Processing Technology (English)	2	2	
		010066	材料热力学与动力学 Materials Thermodynamics and Kinetics	2	2	
非学位	方向选修课程	B01016	计算材料学与材料设计 Computational Material Science and Material Design	2	2	
课	≥8 学分	010019	高温合金与金属间化合物	2	2	

程			High Temperature Alloy and Intermetallic			
134			Compound			
			表面技术(全英文)			
		010055	Surface Technology (English)	2	2	
			增材制造技术			
		010056	Additive Manufacturing Technology	2	2	
			金属腐蚀与防护技术			
		010058	を	2	2	
			材料成形数值模拟			
		010064	Numerical Simulation of Materials Forming	2	2	
			材料激光加工技术			
		010065		2	2	
			Laser Materials Processing Technology			
		010074	金属基复合材料设计与性能	2	_	
		010074	Design and Properties of Metal Matrix	2	2	
			Composites			
		010075	金属凝固理论	2	2	
			Solidification Theory of Metals			
		010076	近净成形技术	2	2	
			Near Net Shape Technology			
		010078	熔池热物理	2	2	
			Molten Pool Thermophysics			
			特种塑性成形理论及技术			
		010080	Theory and Technology of Special Plastic	2	2	
			Forming			
		010081	先进焊接技术	2	2	
		010001	Advanced Welding Technology			
			先进液态成形原理与技术			
		010082	Principle and Technology of Advanced Liquid	2	2	
			Forming			
		G02010	科技英语写作	1	2	
		G02010	English Writing for Science and Technology	1		
			科研素养与创新能力			
		G02060	Scientific Research Professionalism and	1	2	
			Innovative Ability			
			中国古代韵文阅读与欣赏			
	素养选修课	G13043	Reading and appreciating of ancient Chinese	1	2	
	程		rhymes			
	1 学分	C17070	经济学基础	1	2	
		G17070	Fundamentals of Economics	1		
		C10003	美术鉴赏	1	2	
	-	G19002	Art Appreciation	1	2	
		C10002	设计鉴赏	1	2	
		G19003	Design Appreciation	1	2	
		G19004	中西美术比较	1	2	

			A Comparative Study of Chinese and Western			
			Fine Arts			
		G20002	舞蹈形体训练	1	2	
			Physical Training	1		
		G20003	洞箫演奏基础十六课	1	2	
		G20003	Sixteen Lessons in Dongxiao Performance	1	2	
		G20004	钢琴演奏基础十六课	1	2	
		G2000 4	Sixteen Lessons in Piano Performance	1	2	
		G21001	足球	1	2	
			Football	1	2	
		G21002	羽毛球	1	2	
		G21002	Badminton	1		
		G21003	瑜伽	1	2	
		G21003	Yoga	1	2	
		G31001	中国传统文化	1	2	
			Chinese Traditional Culture	1		
其	补修课程					导师
他	不计学分					确定

其他培养环节(6学分)

培养环节	相关内容及要求				
开题报告 (1 学分)	通过文献阅读、学术调研,确定论文选题和研究内容,经导师同意后提交开题报告。开题答辩小组由本学科 5 人及以上专家组成,负责对研究生所做开题报告进行评审,做出评价、提出修改意见,评审不通过者需限期重做,再次开题仍不通过的终止培养。学位论文开题报告审核通过一年后方可申请学位论文送审、答辩。				
中期筛选考 核 (1 学分)	芳 对研究生的政治思想和道德品质、基础理论和专业知识、科研创新、实践能力、 论文进展情况及健康状况等方面进行综合考核。考核不合格的,作肄业处理。				
实习实践 (2 学分)	教学实践:教学实践时间累计不少于1个月的工作量,结束后由导师写出考核评语,考核通过即获得1学分。 专业实践:应安排至少1个月的时间(一般可以利用寒、暑假)到生产、设计研究单位进行实践训练,也可以参加结合研究方向的科研工作或实验室等工作。完成专业实践环节且经考核通过后,即获得1学分。				
② 1. 进行 3 个月及以上的出国访学研修或学术交流; ② 2. 参加学术会议并宣读论文,或做公开学术报告 2 次及以上; ③ 3. 参加全国性的科技竞赛、创意设计、创新创业竞赛等并获奖; ④ 4. 参加 6 次及以上与本学科相关的学术报告,并提交总结。 每项记 1 学分,需完成 2 学分。					
培养单位 教授委员会3	培养单位负责人				

任